Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons
نویسندگان
چکیده
The direct conversion of fibroblasts to induced dopaminergic (iDA) neurons and other cell types demonstrates the plasticity of cell fate. The low efficiency of these relatively fast conversions suggests that kinetic barriers exist to safeguard cell-type identity. Here we show that suppression of p53, in conjunction with cell cycle arrest at G1 and appropriate extracellular environment, markedly increase the efficiency in the transdifferentiation of human fibroblasts to iDA neurons by Ascl1, Nurr1, Lmx1a and miR124. The conversion is dependent on Tet1, as G1 arrest, p53 knockdown or expression of the reprogramming factors induces Tet1 synergistically. Tet1 knockdown abolishes the transdifferentiation while its overexpression enhances the conversion. The iDA neurons express markers for midbrain DA neurons and have active dopaminergic transmission. Our results suggest that overcoming these kinetic barriers may enable highly efficient epigenetic reprogramming in general and will generate patient-specific midbrain DA neurons for Parkinson's disease research and therapy.
منابع مشابه
Direct conversion of human fibroblasts to dopaminergic neurons.
Recent reports demonstrate that somatic mouse cells can be directly converted to other mature cell types by using combined expression of defined factors. Here we show that the same strategy can be applied to human embryonic and postnatal fibroblasts. By overexpression of the transcription factors Ascl1, Brn2, and Myt1l, human fibroblasts were efficiently converted to functional neurons. We also...
متن کاملFunctional and Physical Consequence of Human Immunodefficiency Virus Transactivator TAT Interaction with Human Cell Cycle Regulator p53
Human immunodeficiency virus (HIV) transactivator Tat is a potent activator of both viral and cellular genes. Tat has also been implicated in the development of AIDS-related malignancy. Here, we show that Tat physically and functionally is able to sequester the cell cycle check point protein p53. This sequestration results in non-functional promoter activity of cyclin-dependent kinase/cyclin i...
متن کاملLineage reprogramming: a shortcut to generating functional neurons from fibroblasts.
A series of recent publications have shown that human fibroblasts can be directly converted to functional neurons using defined combinations of transcription factors. The resulting neurons are called induced neurons (iN). When compared with induced pluripotent stem (iPS) cell technology, where somatic cells can be reprogrammed to neurons via a pluripotent stem cell state, lineage reprogramming ...
متن کاملDopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy
Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...
متن کاملDirect conversion from skin fibroblasts to functional dopaminergic neurons for biomedical application
Recent progress in tissue engineering research led to the generation of different types of cells from a handful of skin tissue. Lineage reprogramming is a nascent field, which holds great potential to expand its use in regenerative medicine and disease modeling. The concept of somatic cell epigenetic stability has been fundamentally reshaped through the report of direct conversion of somatic id...
متن کامل